Convention
$ \newcommand{\phat}{\hat{p}} \newcommand{\qhat}{\hat{q}} \newcommand{\khat}{\hat{k}} \newcommand{\epsilonb}{\bar{\epsilon}} \newcommand{\epsilonhat}{\hat{\epsilon}} $
Normalization constants
-
$signature=1
- the default metric is \((-,+,+,+)\). -
$polar=$polarn=$polar0=1
- the default normalization of polarization vectors. -
\$CPWFGauge=1
- the default CPWF gauge parameter.
In Klein space, almost everything is preserved except complex conjugation.
Vectors
Under the default settings, for \(d=2\) the components of vectors are
Higher dimensions
Two dimensional polarization
-
Massless polarization vectors: \(\set{\epsilon,\epsilonb}\) for \(J\in\set{1,-1}\).
-
Complete basis: \(\epsilon(q)_{a}=\set{\epsilon,\epsilonb,n,\qhat}\) with the inner product
\[\begin{equation} \epsilon(q)_{a}^{*}\cdot \epsilon(q)_{b} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & -2 & 0 \\ \end{pmatrix} \, . \end{equation}\]
-
-
Massive polarization vectors: \(\set{\epsilon,\epsilonb,\epsilonhat}\) for \(J\in \set{1,-1,0}\).
-
Complete basis: \(\epsilon(p)_{a}=\set{\epsilon,\epsilonb,\epsilonhat,\phat}\) with the inner product
\[\begin{equation} \epsilon(p)_{a}^{*}\cdot \epsilon(p)_{b} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{pmatrix} \, . \end{equation}\]
-